

N-CH₃, N-Me, C-3 and C-4 carbons respectively.

The structure (**1**) was confirmed by comparison with a synthetic specimen (m.p. NMR, IR).

REFERENCES

1. Ahmad, V. U. and Basha, A. (1971) *Pak. J. Sci. & Ind. Res.* **14** (4-5), 343.
2. Paudler, W. W. and Wagner, S. (1963) *Chem. Ind. (London)*, 1693.

Phytochemistry, 1975, Vol. 14, pp. 293-294. Pergamon Press. Printed in England.

ISOLATION OF ERYTHRODIOL MONOPALMITATE FROM *TAGETES* cv. SEN. DIRKSEN

HUNG-TZAW TAI, GEORGE H. AYNILIAN, M. TIN-WA, HARRY H. S. FONG and NORMAN R. FARNSWORTH

Department of Pharmacognosy and Pharmacology, College of Pharmacy, University of Illinois at the Medical Center, Chicago, IL. 60612, U.S.A.

(Received 22 April 1974)

Key Word Index—*Tagetes* cv. Sen. Dirksen; Compositae; erythrodiol monopalmitate; 3- β -palmitoxy-olea-12en-28-ol; palmitic acid; sterols.

Plant. *Tagetes* cv. Sen. Dirksen. **Source.** The plant material was collected in the United States by Dr. Robert E. Perdue, Jr. [1]. A voucher specimen, identified by Dr. Perdue, has been deposited at the Department of Pharmacognosy and Pharmacology, University of Illinois at the Medical Center (specimen CA-2033). **Uses.** None, but other species of this genus have shown nematocidal [2,3] and antitumor [4] activities.

Previous work. None on this species. From *T. minuta*: thiophenes [5], terpenes [6,7], flavonoids [4, 8-11], carotenoids [12-14]; *T. erecta*: carotenoids [13], sterols [17], thiopenes [18].

Plant part examined. Whole plant. **Isolation and Identification.** The powdered plant material (5 kg) was defatted with light petroleum, followed by extraction with MeOH and concentration *in vacuo* to yield 617 g of residue, which was partitioned between CHCl₃ and H₂O. The CHCl₃ solubles (66.18 g) were chromatographed over a 2 kg column of silica gel PF₂₅₄ and eluted with CHCl₃-MeOH (9:1). Fractions 11-33 (50 ml each) were combined, taken to dryness (12.96 g), and rechromatographed over a second column of silica gel PF₂₅₄ (600 g). This column was developed with benzene and work-up of fractions 76-102 (20 ml each) yielded 71.1 mg of a crystalline material from acetone. The compound was identified as erythrodiol monopalmitate by the following physical

methods. It gave a positive Liebermann-Burchard test for triterpenes; m.p. 112-113°; $[\alpha]_D^{27.5} + 57.5^\circ$ (conc 0.1 in CHCl₃). The compound gave the following *R_f* values on silica gel G TLC-CHCl₃ (0.37), CHCl₃-MeOH (9:1) (0.86). IR spectrum (KBr) at ν_{max} : 3475 (s) (OH), 2915 (s), 2840 (s), 1700 (s) (ester C=O), 1465 (s), 1380 (m), 1360 (m), 1260 (m), 1240 (m), 1140 (w), 1070 (w), 1045 (w), 1010 (w), 820 (w), 810 (w), 800 (w) (trisubstituted double bond) and 720 cm⁻¹ [-(CH₂)_n-, $n > 4$]. A PMR spectrum in CDCl₃, (TMS), showed signals at 5.2 δ (1H, broad, C₁₂-H), 4.5 δ (1H, m, C_{3a}-H), 3.4 δ (2H, dd, C₂₈-H₂). The MS showed a molecular ion at *m/e* 680 (1.7%), followed by ions at *m/e* 662 (3.5%), 425 (4.8%), 393 (5.2%), 256 (2.2%), 234 (39.1%), 203 (100%) and 189 (12.6%). All of these data were in agreement with those reported for erythrodiol monopalmitate isolated from *Madhuca butyracea* (Sapotaceae) [19]. **Saponification** with boiling 5% alcoholic KOH (3 ml) for 3 hr gave erythrodiol, m.p. 210-214°; $[\alpha]_D^{27.5} + 95^\circ$ (conc 0.1 in CHCl₃) (MS and PMR spectra and MS of its acetate [20]) and palmitic acid (GLC of its methyl ester 5% OV-101 on Gas Chrom Q, 80-100 mesh at 260°). The isolation of this compound from *Tagetes* cv. Sen. Dirksen represents the first report of its occurrence in the Compositae.

The isolate from fractions 162-165 from the second column was shown by GLC (5% OV-101

on Gas Chrom Q, 80–100 mesh, isothermal at 260°) to be a mixture of stigmasterol (78.5%) and sitosterol (21.5%).

REFERENCES

1. Medicinal Plant Resources Laboratory, Agricultural Center-East, United States Department of Agriculture, Agricultural Research Service, NE, Beltsville, Maryland, 20705, U.S.A.
2. Uhlenbroek, J. H. and Bijloo, J. D. (1958) *Rec. Trav. Chim.* **77**, 1004.
3. Uhlenbroek, J. H. and Bijloo, J. D. (1959) *Rec. Trav. Chim.* **78**, 382.
4. Ickes, G. R., Fong, H. H. S., Schiff, P. L., Jr., Perdue, R. E., Jr. and Farnsworth, N. R. (1973) *J. Pharm. Sci.* **62**, 1009.
5. Atkinson, R. E., Curtis, R. F. and Phillips, G. T. (1964) *Tetrahedron Letters* 3159.
6. Jones, I. G. H. and Smith, F. B. (1925) *J. Chem. Soc.* 2530.
7. Bohrman, H. and Youngken, H. W., Jr. (1968) *Phytochemistry* **7**, 1415.
8. Latour and magnier de la source (1877) *Bull. Soc. Chim. Paris* **228**, 337; through Geissmann, T. (1962) *The Chemistry of Flavonoid Compounds* McMillan, New York.
9. Morita, N. (1957) *Yakugaku Zasshi* **77**, 31.
10. Rao, P. S. and Seshadri, T. R. (1941) *Proc. Indian Acad. Sci.* **14A**, 643.
11. Banerjee, N. R. and Seshadri, T. R. (1956) *Proc. Indian Acad. Sci.* **44A**, 284.
12. Cucu, V. and Tarpo, E. (1968) *Farmacia (Bucharest)* **6**, 221.
13. Tarpo, E. (1970) *Farmacia (Bucharest)* **18**, 305.
14. Alam, A. U., Couch, J. R. and Cregar, C. R. (1968) *Can. J. Bot.* **46**, 1539.
15. Zechmeister, L. and Sease, J. W. (1947) *J. Amer. Chem. Soc.* **69**, 273.
16. Tarpo, E. (1971) *Farmacia (Bucharest)* **19**, 25.
17. Kasprzyk, Z. and Kozieckowska, T. (1966) *Bull. Acad. Pol. Sci. Ser. Sci. Biol.* **14**, 645.
18. Bohlmann, F. and Herbst, P. (1962) *Chem. Ber.* **95**, 2934.
19. Awasthi, Y. C. and Mitra, C. R. (1968) *Phytochemistry* **7**, 637.
20. Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963) *J. Am. Chem. Soc.* **85**, 3688.